

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

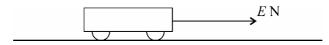
4728

Mechanics 1

Specimen Paper

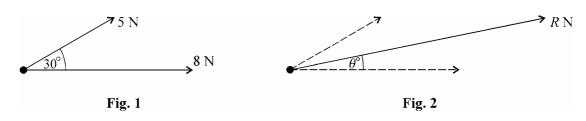
Additional materials: Answer booklet Graph paper List of Formulae (MF 1)

TIME 1 hour 30 minutes


INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

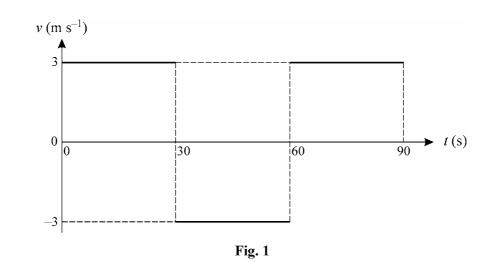
INFORMATION FOR CANDIDATES


- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1

An engine pulls a truck of mass 6000 kg along a straight horizontal track, exerting a constant horizontal force of magnitude *E* newtons on the truck (see diagram). The resistance to motion of the truck has magnitude 400 N, and the acceleration of the truck is 0.2 m s^{-2} . Find the value of *E*. [4]

2

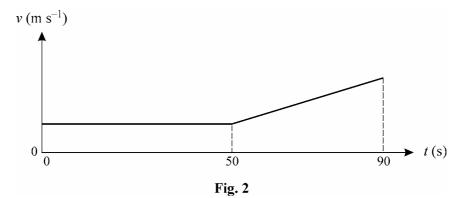


Forces of magnitudes 8 N and 5 N act on a particle. The angle between the directions of the two forces is 30° , as shown in Fig. 1. The resultant of the two forces has magnitude *R* N and acts at an angle θ° to the force of magnitude 8 N, as shown in Fig. 2. Find *R* and θ . [7]

3 A particle is projected vertically upwards, from the ground, with a speed of 28 m s^{-1} . Ignoring air resistance, find

(i)	the maximum height reached by the particle,	[2]
(ii)	the speed of the particle when it is 30 m above the ground,	[3]
(iii)	the time taken for the particle to fall from its highest point to a height of 30 m,	[3]
<i>(</i> •)		[0]

(iv) the length of time for which the particle is more than 30 m above the ground. [2]



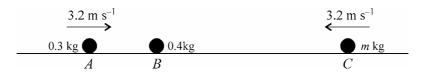
A woman runs from A to B, then from B to A and then from A to B again, on a straight track, taking 90 s. The woman runs at a constant speed throughout. Fig. 1 shows the (t, v) graph for the woman.

(i) Find the total distance run by the woman.

4

(ii) Find the distance of the woman from A when t = 50 and when t = 80, [3]

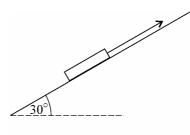
At time t = 0, a child also starts to move, from *A*, along *AB*. The child walks at a constant speed for the first 50 s and then at an increasing speed for the next 40 s. Fig. 2 shows the (t, v) graph for the child; it consists of two straight line segments.


- (iii) At time t = 50, the woman and the child pass each other, moving in opposite directions. Find the speed of the child during the first 50 s. [3]
- (iv) At time t = 80, the woman overtakes the child. Find the speed of the child at this instant. [3]
- 5 A particle P moves in a straight line so that, at time t seconds after leaving a fixed point O, its acceleration is $-\frac{1}{10}t \text{ m s}^{-2}$. At time t = 0, the velocity of P is V m s⁻¹.
 - (i) Find, by integration, an expression in terms of t and V for the velocity of P. [4]
 - (ii) Find the value of V, given that P is instantaneously at rest when t = 10. [2]
 - (iii) Find the displacement of P from O when t = 10. [4]

4728 Specimen Paper

(iv) Find the speed with which the particle returns to O.

[3]


[3]

4

Three uniform spheres A, B and C have masses 0.3 kg, 0.4 kg and m kg respectively. The spheres lie in a smooth horizontal groove with B between A and C. Sphere B is at rest and spheres A and C are each moving with speed 3.2 m s^{-1} towards B (see diagram). Air resistance may be ignored.

- (i) A collides with B. After this collision A continues to move in the same direction as before, but with speed 0.8 m s⁻¹. Find the speed with which B starts to move. [4]
- (ii) *B* and *C* then collide, after which they both move towards *A*, with speeds of 3.1 m s^{-1} and 0.4 m s^{-1} respectively. Find the value of *m*. [4]
- (iii) The next collision is between *A* and *B*. Explain briefly how you can tell that, after this collision, *A* and *B* cannot both be moving towards *C*. [1]
- (iv) When the spheres have finished colliding, which direction is A moving in? What can you say about its speed? Justify your answers. [4]
- 7 A sledge of mass 25 kg is on a plane inclined at 30° to the horizontal. The coefficient of friction between the sledge and the plane is 0.2.
 - (i)

The sledge is pulled up the plane, with constant acceleration, by means of a light cable which is parallel to a line of greatest slope (see Fig. 1). The sledge starts from rest and acquires a speed of 0.8 m s^{-1} after being pulled for 10 s. Ignoring air resistance, find the tension in the cable. [6]

(ii)

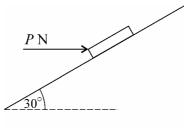


Fig. 2

On a subsequent occasion the cable is not in use and two people of total mass 150 kg are seated in the sledge. The sledge is held at rest by a horizontal force of magnitude P newtons, as shown in Fig. 2. Find the least value of P which will prevent the sledge from sliding down the plane. [7]

1		$400 = 6000 \times 2$ we $E = 1600$	B1 M1 A1√ A1	4	For resultant force $E - 400$ stated or implied For use of Newton II for the truck For the correct equation For correct answer 1600
2	EITH OR:	<i>HER</i> : $R \cos \theta = 8 + 5 \cos 30^{\circ}$ $R \sin \theta = 5 \sin 30^{\circ}$ Hence $R^2 = (12.33)^2 + 2.5^2$ R = 12.6 $\tan \theta = \frac{2.5}{12.33}$ $\theta = 11.5$ Triangle of forces has 5, 8, <i>R</i> and 150° $R^2 = 8^2 + 5^2 - 2 \times 5 \times 8 \times \cos 150^{\circ}$ Hence $R = 12.6$ $\sin \theta = \frac{5 \sin 150^{\circ}}{12.58} = 0.1987$	M1 A1 A1 M1 A1√ M1 A1√ M1 A1 A1 A1 M1 A1 A1 A1 A1		For attempt at resolving $ $ or \perp to 8 N force For one completely correct equation For a second correct equation For correct method for either unknown For correct value For correct method for second unknown For correct value For correct value For considering any triangle with 5, 8, <i>R</i> For correct triangle drawn or used For use of cosine formula attempted For correct expression for R^2 For correct value For use of sine formula with numerical <i>R</i>
	(•)	Hence $\theta = 11.5$	A1√	7	For correct value
3	(i) 	$0 = 28^{2} - 2 \times 9.8 \times h$ Hence maximum height is 40 m	M1 A1	2	For use of const acc formula(s) to find <i>h</i> For correct value 40
	(ii)	$v^2 = 28^2 - 2 \times 9.8 \times 30$ Hence speed is 14 m s ⁻¹	M1 A1 A1	3	For use of const acc formula(s) to find v For correct equation in v For correct value 14
	(iii)	$10 = \frac{1}{2} \times 9.8t^2$ Hence time is $\frac{10}{7} \approx 1.43$ s	M1 A1√ A1	3	For use of const acc formula(s) to find <i>t</i> For correct equation in <i>t</i> For correct value $\frac{10}{7}$ or equivalent
	(iv)	Length of time is $2 \times \frac{10}{7} = \frac{20}{7}$ s	M1 A1√	2 10	For doubling, or equiv longer method For correct value, i.e. double their (iii)
4	(i)	Total distance is $3 \times 30 + 3 \times 30 + 3 \times 30 = 270$ m	M1 M1 A1	3	For any calculation of a rectangular area For addition of three positive areas For correct value 270
	(ii)	Distance at $t = 50$ is $90-60 = 30$ m Distance at $t = 80$ is 60 m	M1 A1 A1	3	For correct use of signed areas For correct value 30 For correct value 60
	(iii)	Child's speed is $\frac{30}{50} = 0.6 \text{ m s}^{-1}$	B1√ M1 A1	3	For distance 30 m For dividing by 50 For correct value 0.6
	(iv)	Child walks $60-30 = 30$ m in next 30 s Hence $30 = \frac{1}{2}(0.6 + v) \times 30$ i.e. child's speed is 1.4 m s ⁻¹	B1√ M1 A1		For child's distance gone from $t = 50$ to 80 For suitable use of $s = \frac{1}{2}(u+v)t$ or equiv For correct value 1.4

5	(i)	$v = \int -\frac{1}{10}t \mathrm{d}t = -\frac{1}{20}t^2 + c$	M1		For integrating the acceleration formula
			A1		For $v = -\frac{1}{20}t^2$, with or without <i>c</i>
		V = 0 + c	M1		For using $v = V$ when $t = 0$ to find c
		Hence $v = V - \frac{1}{20}t^2$	A1	4	For correct equation for <i>v</i> in terms of <i>t</i> and <i>V</i>
	(ii)	$0 = V - \frac{10^2}{20} \Longrightarrow V = 5$	M1		For use of given values to find V
		20	A1	2	For correct value 5
	 (iii)	$s = \int (5 - \frac{1}{20}t^2) dt = 5t - \frac{1}{60}t^3 + k$	M1		For any attempt to integrate velocity
		j 20 20 00	A1√		For correct integration (ignoring <i>k</i>)
		Hence displacement is $50 - \frac{1000}{60} = 33\frac{1}{3}$ m	M1		For evaluation of <i>s</i> when $t = 10$
		60	A1√	4	For correct value $33\frac{1}{3}$; allow omission of <i>k</i>
	(iv)	Returns to O when $0 = -\frac{1}{60}t^3 + 5t \Rightarrow t^2 = 300$	M1		For attempting non-zero root of $s = 0$
		When $t^2 = 300, v = -\frac{1}{20} \times 300 + 5$	M1		For consequent evaluation of v
		i.e. speed is 10 m s^{-1}	A1	3	For correct value 3 (allow negative here)
				13	
6	(i)	$0.3 \times 3.2 = 0.3 \times 0.8 + 0.4 \times b$	M1		For using conservation of momentum
			A1 A1		For correct LHS For correct RHS
		Hence $b = 1.8$ so B's speed is 1.8 m s^{-1}	A1	4	For correct value 1.8 correctly obtained
	 (ii)	$0.4 \times 1.8 - 3.2m = -0.4 \times 3.1 - 0.4m$	M1		For momentum equn with at least one
					relevant negative sign
			A1 A1		For correct LHS For correct RHS
		Hence $m = 0.7$	A1 A1	4	For correct value 0.4 correctly obtained
	 (iii)	$0.4 \times 3.1 > 0.3 \times 0.8$, so net momentum of A and B	+		······
		is towards the left and therefore they can't both			
		move towards the right after the impact	B1	1	For correctly explained application of momentum conservation.
	(iv)	Total momentum of all three particles is leftwards	M1		For reasoning based on the total momentum
		Hence <i>A</i> ends up moving left, as if it moves right after all collisions so do <i>B</i> and <i>C</i>	A1		For correct conclusion regarding direction
		Total momentum left is at most $1.4a$	M1		For correct conclusion regarding direction For use of the idea that $a \ge b \ge c$
		Hence $1.4a \ge 0.7 \times 3.2 - 0.3 \times 3.2$, so the speed of			
		A is at least 0.914 m s^{-1}	A1	4	For correct conclusion
				13	

7	(;)	Acceleration is $\frac{0.8}{10} = 0.08 \text{ m s}^{-2}$	B1		For 0.8÷10 stated or implied
ĺ	(1)		B1		
		$R = 25g\cos 30^{\circ}$ T - 25g sin 30° - 0.2×25g cos 30° = 25×0.08	ы М1		For correct resolving \perp plane For attempting Newton II plane
		1 25g sin 50 0.2×25g cos50 = 25×0.00	B1		For upwards force $T - 25g \sin 30^\circ - F$
			B1√		For $F = 0.2 \times 25g \cos 30^\circ$
		Hence the tension is 167 N	A1	6	For correct value 167
	(ii)	$R' = P\sin 30^\circ + 175g\cos 30^\circ$	M1		For resolving \perp plane, with 3 forces
			A1		For correct equation
		$P\cos 30^\circ + 0.2R' = 175g\sin 30^\circ$	M1		For resolving plane, with 3 forces
		$P(\cos 30^\circ + 0.2\sin 30^\circ) = 175g(\sin 30^\circ - 0.2\cos 30^\circ)$	A1 M1		For correct equation For attempting elimination of R'
		Hence $P = \frac{175g(\sin 30^\circ - 0.2\cos 30^\circ)}{\cos 30^\circ + 0.2\sin 30^\circ} = 580$	M1		For solving a relevant equation for <i>P</i>
		Thence $T = \frac{-580}{\cos 30^\circ + 0.2 \sin 30^\circ}$		-	
			A1	7	For correct value 580
				13	